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Summary

For 40 years prophylactic anti-D has been given to D-negative women after
parturition to prevent haemolytic disease of the fetus and newborn. Mono-
clonal or recombinant anti-D may provide alternatives to the current plasma-
derived polyclonal IgG anti-D, although none of them have yet proved as
effective in phase 1 clinical trials. The variation in efficacy of the antibodies
may have been influenced by heterogeneity in glycosylation of anti-D pro-
duced from different cell lines. Some aspects of the conduct of the human
studies, most notably the use of low doses of anti-D and target D positive red
cells in vivo, may aid the design of the clinical development of other immu-
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The recent editorial by Dayan and Wraith [1] in this journal
highlighted the challenges for developing new immuno-
therapies after the disastrous trial of TGN1412. This over-
view presents some of the knowledge gained from many
clinical trials of anti-D that may be relevant for translational
immunology.

Prevention of hydrops fetalis or Rhesus haemolytic disease
of the fetus and newborn (HDFN) by prophylactic anti-D is
the most successful clinical application of antibody-
mediated immunosuppression. HDFN occurs after a D-
negative woman becomes immunized to fetal D-positive red
blood cells following fetomaternal haemorrhage (FMH); the
IgG anti-D produced is transferred across the placenta
causing destruction of fetal red cells by splenic macrophages.
In the 1940s, when the cause of this disease was first recog-
nized, 1% of babies were born with HDFN and 40% of them
died [2]. Anti-D is the commonest antibody implicated. The
RhD polypeptide on red cells is the most immunogenic of
the blood group antigens as it is absent from cells of
D-negative individuals who lack the RHD gene [3].

HDEN is now rare, partly due to improved fetal and neo-
natal care but mainly because of prevention of primary
immunization of susceptible D-negative women by prophy-
lactic IgG anti-D [1]. Since 1968, after successful clinical
trials in the UK [4] and USA [5], anti-D has been given to
10% of all women postnatally, resulting in a reduction in the
incidence of the disease of about 95%. Fewer than 30 peri-
natal deaths per year are now caused by HDFN. In 2002, the
National Institute of Health and Clinical Excellence (NICE)

nomodulatory drugs in order to minimize adverse effects.
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recommended routine antenatal anti-D prophylaxis be given
to all D-negative women, in addition to postnatal prophy-
laxis, to reduce the immunization rate still further. Intrave-
nous (IV) anti-D is also now used therapeutically to treat
some D-positive patients with immune thrombocytopenic
purpura (ITP) [6]. Thus the demand for anti-D is increasing.

Anti-D immunoglobulin is prepared from pooled hyper-
immune human plasma. For many years, issues over viro-
logical safety and, more recently, variant Creutzfeld Jacob
disease (vCJD) have stimulated the search for alternative
supplies. In the UK, plasma for fractionation is now sourced
from North American donors because of concerns over UK
donors being latent carriers of vCJD. With the aim of replac-
ing polyclonal anti-D prepared from human plasma with
biotech versions for both diagnostic and clinical use, hun-
dreds of anti-D monoclonal (mAb) or recombinant (rAb)
antibodies have been produced. They are all derived from
human immunoglobulin genes or B cells because mice do
not recognize the RhD antigen. Various expression systems
have been used, including human B-cell lines, Chinese
hamster ovary (CHO) cells, mouse-human heterohybrido-
mas and rat myelomas.

Although the exact mechanism of suppression of D
immunization by administration of passive IgG anti-D
remains to be elucidated [7], it is known that D-positive red
cells are rapidly cleared to the spleen by macrophages via
IgG Fc receptor (FcyR) interactions and rendered non-
immunogenic. Indeed, to ensure prophylactic anti-D is likely
to be effective at preventing D immunization to a large FMH,
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women are tested 2—3 days later to check that fetal cells are
cleared from the circulation [8]. Otherwise, allogeneic red
cells have a long survival after FMH or transfusion. Alloim-
mune responses are slow to develop, typically 5-15 weeks for
anti-D [9]. This is probably due to their lack of danger
signals (from foreign molecules) so that they are not recog-

Reference
[15,19,22,25]

[15,16]

nized by the immune system until they become senescent,
which then stimulates their phagocytosis via phosphatidyl
serine receptors [10]. Without RhD prophylaxis, approxi-
mately 17% of D-negative women become immunized after
pregnancy with a D-positive fetus [11]. This incidence is

Effect on RhD immunization
Prevented in 90% of subjects
Increased, rapid anti-D response
Increased, rapid anti-D response

lower than for deliberately immunized normal subjects (up o Ty T T
. 2 &

to approximately 85% respond [9]) because for most women g S g S-S s

the volumes of FMH are too small for the red cells to be E 2 ;:) S 22

immunogenic [12]. Pregnant women can make robust
alloimmune responses whilst tolerating their semi-
allogeneic fetus.

Over the last 20 years, 19 anti-D mAbs and rAbs were
tested in 15 first-in-man studies. These were recently
reviewed [13] and are summarized here. No serious adverse
effects occurred. In vitro biological assays of FcyR-mediated
phagocytosis and haemolysis using human effector cells are
well established [14] and were used for screening. The clini-
cal trials assessed the ability of the antibodies to remove
small volumes (less than 1%) of D-positive red cells from the
circulation and in some studies the ability of the anti-D to
prevent D immunization was also then determined. Many of
the mAbs and rAbs were directly compared with polyclonal
anti-D.

Rate of red cell clearance (zero to rapid: — to +++++)

polyclonal anti-D used (+++)
Slower than blend of mAbs BRAD-3+BRAD-5 (++)

Rapid, little variation among subjects, but 3x higher dose than
Very variable between subjects (+ to +++)

Rapid, little variation among subjects (++++)

Very variable between subjects (— to ++++)

Extremely rapid, even in absence of FcyR binding (+++++)
Extremely rapid (+++++)

Slow and variable (+)
Rather slow and variable (+ to ++)

(between 100 and 1800 pg) and anti-D was administered either on pre-coated cells or injected i.v. or i.m. Clearance studies were performed for between 1 h and 7 days, with varied timings of sample collection.

Clearance studies were performed in D-positive (autologous) or D-negative subjects, with red cells being injected before or after anti-D. Volumes of red cells ranged from 0-5 to 15 ml. Doses of anti-D differed
Detection of anti-D responses was determined either in samples taken every 2 or 4 weeks or in a single 3- or 6-month sample; red cell challenge injections (secondary immunization) were given in only two

Great heterogeneity in antibody efficacy was observed ¥
(Table 1). Two mAbs derived from human B-lymphoblastoid E
cell lines, BRAD-3 and BRAD-5, mediated rapid red cell g
clearance and prevented D immunization almost as effec- é .
tively as polyclonal anti-D, although a three- to fourfold g é
higher dose was used [15,16]. The plasma half lives of ‘E Z = :§
BRAD-3 and BRAD-5 were normal but bioavailability was = = o
half that of polyclonal anti-D [17]. When these antibodies g == - §
were expressed as rAbs in CHO cells, clearance of autologous 2 ’j‘é E E 'ED %’\ - 8
D-positive red cells was slower than the original mAbs [18]. E g Ez = - < E] f
A large study using another CHO-derived anti-D rAb, § 3 2 E E =0 2 é % §
MonoRho, gave disappointing results, red cell clearance Egi g % % = 5 E § é | 8 %
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showed they promoted extremely rapid clearance of autolo-
gous red cells, faster than polyclonal anti-D [24,25]. The
effect of altering the cell line expressing FOG-1 from mouse
to rat was striking, changing the clearance from very slow
and incomplete to very fast [21,24]. In the latter study this
was associated with haemolysis, some clearance to the liver
and febrile reactions [24]. These responses do not occur after
prophylaxis with polyclonal anti-D. Unexpectedly, mutants
of FOG-1 rAb, that lacked FcyR interactions in vitro, also
mediated rapid red cell clearance, although normal survival
had been expected [24]. These IgG anti-Ds must have bound
to receptors other than IgG FcyR.

Many of the anti-D mAbs and rAbs did not behave like
polyclonal anti-D. None were quite as effective and some
from rodent cell lines even resulted in undesirable immune
responses. The in vivo responses were determined mainly by
the species of cell line producing the antibodies and not by
the protein sequences. The cause of these unexpected and
possibly harmful reactions may be because the IgG anti-D
produced from animal cells interacted with components of
the innate immune system. The most likely explanation is
variation in their oligosaccharide composition.

The type of glycosylation of IgG depends on the cell in
which it is produced and is species-specific. Structures such
as N-glycolyl neuraminic acid and high mannose oligosac-
charides on rodent IgG [26,27] may be recognized as foreign
by innate immune pattern recognition receptors (PRRs) [28]
with subsequent pro-inflammatory responses. PRRs include
cellular asialoglycoprotein and mannose receptors. After
binding anti-D on D-positive red cells, they might have
stimulated antibody responses to the D antigen. In plasma,
mannan binding lectin may cause complement mediated
haemolysis when bound to mannose residues of anti-D on
a red cell. Endogenous IgG antibodies [29] recognizing
galactose-0u1,3-galactose on murine IgG [30] could bind
anti-D expressing this oligosaccharide. Recently, endogenous
IgE anti-galactose-0u1,3-galactose has caused hypersensitiv-
ity reactions in some patients given cetuximab (a cancer
immunotherapeutic) produced in mouse myeloma SP2/0
cells [31]. Lack of sialic acid on many anti-D mAbs and rAbs
would render the IgG pro-inflammatory upon binding FcyR
[32].

Polyclonal anti-D can be either beneficial or lethal in dif-
ferent clinical settings. The dose of target red cells is a major
factor. Clearance of small volumes of red cells, as in FMH,
is a ‘silent, non-inflammatory, non-haemolytic process. If,
however, a D-positive individual receives large doses of
anti-D, as in a fetus suffering RhD haemolytic disease or,
rarely, ITP patients treated with IV anti-D, severe haemolysis
can occur. In these occasionally fatal cases, additional symp-
toms are usually hydrops (oedema) in HDFN [2] and acute
haemoglobinaemia, haemoglobinuria and disseminated
intravascular coagulation in ITP patients [33]. Most cases of
acute haemolysis were considered to be due to robust
extravascular haemolysis (macrophage mediated) rather

than intravascular haemolysis [34]. Even in the absence of
such serious adverse events, ITP patients not uncommonly
experience fever and chills after infusion of IV anti-D [34],
indicative of inflammatory reactions. Thus if ITP patients
were treated with pro-inflammatory anti-D mAbs or rAbs
instead of the current polyclonal anti-D, a complex series
of unintended and potentially dangerous reactions might
follow.

In the aftermath of the TGN1412 phase 1 study, some
aspects of the clinical trials of anti-D may be helpful for the
future development and regulation of first-in-man studies of
other immunotherapeutics [1], especially those targeting
cells in blood (Table 2). Choice of starting dose is particu-
larly important. Low doses of red cells and anti-D were used
in all the human work [13]. In some studies, for example for
BRAD-3 [21], autologous red cells (0-5 ml) were coated with
anti-D ex vivo then washed and injected, thus minimizing
the dose of antibody and mitigating the possibility of adverse
effects. Clearance of such small volumes of red cells could be
accurately followed when they were isotopically labelled.
When this antibody proved safe and effective, anti-D and red
cells were then injected separately [15,16] to simulate more
closely the clinical situation. Evidence of inflammatory reac-
tions with low doses of anti-D and red cells [24] should
ensure caution in scale-up studies.

In conclusion, the extensive data from human studies of
anti-D mAbs and rAbs suggests that their glycosylation
might have had a powerful effect in modulating their in
vivo activities. Some rAbs increased rather than decreased
the incidence of D immunization, one caused harmful
haemolytic reactions and one had an extremely low
bioavailability. These effects were not predicted from the in
vitro studies performed. In future, when developing recom-
binant glycoproteins for human therapy, consideration
should be given to the possibility that interactions between
non-human oligosaccharides and cells or molecules other
than the intended ligand may occur.
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